BACTERIAL GENETICS

DNA

- Storehouse of genetic information
- Most wonderful substance on earth.
- Double helix
- Nucleotide chain consists of backbone with alternating deoxyribose and phosphate. Sugar is linked to bases.
- Purine –adenine(A) and guanine(G)
- Pyrimidine –thymine(T) and cytosine(C)

- Codon -triplet of bases that codes for a single amino acid
- More than one triplet may code for the same amino acid.
- UAA , UGA, UAG –nonsense codon
- Segment of DNA carrying codons specifying for a particular polypeptide is called GENE

		Second I	Base	Marca	
	U	С	Α	G	
U	UUU Phe	UCU	UAU Tyr	UGU Cys	U
	UUC	UCC	UAC	UGC	C
	UUA	UCA	UAA Stop	UGA Stop	A
	UUG	UCG	UAG Stop	UGG Trp	G
lase o	CUU	CCU	CAU His	CGU	U
	CUC	CCC	CAC	CGC	C
	CUA	CCA	CAA	CGA	^ ≓
	CUG	CCG	CAG	CGG	G
First E	AUU	ACU ACC ACA ACG	AAU	AGU	Bas
	AUC Ile		AAC	AGC	c °
	AUA		AAA Lys AAG	AGA Arg	A
	AUG Met / Start			AGG	G
G	GUU	GCU	CAU	GGU	U
	GUC	GCC Ala	GAC	GGC	с
	GUA		GAA	GGA	A
	GUG	GCG	GAG	GGG	G

- Genotype -sum total of genetic capacity
- Phenotype –expressed part of the genotype
- Genotypic variation –due to change in the gene structure –heritable ,environment independent,stable
- Phenotypic variation –phenol agar,lactose fermentation - influenced by environment,not inherited,temporary

MUTATION

- Random, heritable, undirected variation due to a change in the nucleotide sequence of DNA
- Addition, deletion or substitution of a base pair
- Spontaneous mutation
- Induced mutation -mutagens
- Lethal mutation

Silent Mutations							
ATG	GAA	GCA	CGT				
Met	Glu	Ala	Gly				
ATG	GAG	GCA	CGT				
Met	Glu	Ala	Gly				
1. C				999°			

GENE TRANSFER

- Transformation
- Conjugation
- Transduction
- Lysogenic conversion
- Transposition

TRANSFORMATION

- Transfer of genetic information through free DNA
- Griffith in 1928 conducted the first genetic experment.
- Pneumococci injected to mice
- Capsulated –smooth (S) –virulent
- Noncapsulated-(rough)- avirulent

CONJUGATION

- Genetic material transferred from donor to the recipient by establishing physical contact through tube(in 1946).
- Equivalent to sexual polarity in bacteria.
- Studied in *E. coli* K12 strain.

PLASMID

- Extrachromosomal cytoplasmic genetic determinant capable of autonomous replication.
- F factor- fertility factor
- R factor- resistance factor.
- Col factor- colicinogenic factor
- Ent factor- enterotoxigenic factor.

- R factor- resistance factor
- Watanabe –japanese worker observed that Shigella that causes bacillary dysentery developed multiple drug resistance at once to many drugs like tetracycline, sulphonamides, streptomycin and chloramphenicol.
- R factor transferred from *E.coli* to *shigella*
- Indiscriminate use of antibiotics in veterinary practice leads to drug resistance.

TRANSDUCTION

- Bacteriophage mediated transfer of genetic material from one bacteria to another.
- Penicillinase production in Staphylococci.
- Ex. Lambda phage in *E.coli* transfers a particular gene.

LYSOGENIC CONVERSION

- Lysogenisation- when phage infects bacteria the phage DNA gets incorporated into bacterial chromosome confering a new property.
- The beta phage in the chromosome of diphtheria bacilli gives the property of toxigenicity.
- Toxigenicity is lost if the phage is removed.

Genetic mechanisms of drug resistance in bacteria.

- Mutation
- Transformation
- Conjugation –R factor
- Transduction

GENETIC ENGINEERING RECOMBINANT DNA TECHNOLOGY (rDNA)

- Artificially introducing a desired gene into the bacteria or yeast
- Isolation of gene of interest, by cutting it at the specific desired sites using molecular scissors called restriction endonucleases.
- Plasmid or phage used as vector to carry the DNA segment.
- Cut and paste technique
- Ligase enzyme used to paste the DNA into the genome of *E.coli*.

taken from bacterium

- Production of insulin,interferon,interleukin,somatostatin
- Vaccine- hepatitis B vaccine, rabies vaccine
- Gene therapy.
- Restriction enzymes
 Eco RI Hind III

Polymerase Chain Reaction (PCR)

- Amplication of DNA or genes in the lab
- Carried out in thermocyclers
- Each cycle consists of denaturation annealing extension
- After 20-30 cycles millions of copies formed
- Product if one cycle becomes template of next cycle.

PCR machine or thermocycler

- Target DNA identified
- Two oligonucleotide primers complimentary to sequence of target DNA
- Heat stable polymerase Taq 1 used.
- Amplified DNA detected by electrophoresis

- Applications of PCR
- Bacterial disease- tb,H.pylori,chlamydiae mycoplasma
- Viral disease –hepatitis,HIV, herpes, cytomegalo virus
- Fungal disease –candida ,cryptococcus
- Parasitic disease- toxoplasma, trypanosoma, plasmodium.